الصفدة 1	وريا	ان الوطني الموحد للبكالم ممالك الدولية — خيار فرنسية الدورة العادية 2018	IL NS27F	**************************************	الساك البنرية وزارة التربية الوضية والتكوين المضي ليم المالتر والبحث العلمي
oc →	4	المورة العديم 2010		، للتقويم والامتحانات التوجيه	et 100 000
3 5	مدة الإنجاز المعامل	ليمياء الحياة والأرض – خيار فرنسية	الفيزياء والد : مسلك علوم ا	شُعبة العلوم التجريبية	المادة الشعبة أو المسلك
=		K	ACHICH	E	
	> Or	calculatrice scientifique donnera les expression imériques	-	s 	
		d'examen comporte quatr en physique	e exercices	: un exercice en chir	nie et trois
# * # * # * # * # * # * # * # * # * # *	• Chimie	e î			(7 points)
	.0	Transformations acido-basique	es		(5 points)
	o	Étude d'une pile			(2 points)
	• Physiq	me:			(13 points)
le I	o Exe	ercice 1 : Ondes ultrasonores			(2,5 points)

(5 points)

(5,5 points)

o Exercice 2 : Evolution d'un système électrique

o Exercice 3 : Evolution d'un système mécanique

Barème Sujet Chimie (7 points): Transformations acido-basiques; Étude d'une pile Les deux parties sont indépendantes Partie 1: Etude de l'ibuprofène comme acide carboxylique L'ibuprofène est une molécule de formule brute $C_{13}H_{13}O_2$. Elle constitue le principe actif de divers médicaments de la classe des anti-inflammatiores. Cette partie vise: - l'étude d'une solution aqueuse d'ibuprofène; - le titrage d'une solution aqueuse d'ibuprofène. - le titrage d'une solution aqueuse d'ibuprofène Le pH d'une solution aqueuse d'ibuprofène Le pH d'une solution aqueuse d'ibuprofène de concentration molaire $C = 5, 0.10^{-2}$ mol. L^{-1} vaut $pH = 2, 7$ à 25°C. L'équation de la réaction modélisant la transformation entre l'ibuprofène et l'eau est: $C_{12}H_{13}O_{2(aq)} + H_2O_{(1)} \rightleftharpoons C_{13}H_{17}O_{2(aq)} + H_3O_{(aq)}^*$ 1.1. Montrer que cette transformation est limitée. 1.2. Calculer la valeur du quotient de réaction Q_{c,s_0} du système chimique à l'équilibre. 1.3. En déduire la valeur du quotient de réaction Q_{c,s_0} du système chimique à l'équilibre. 1.4. Titrage d'une solution aqueuse d'ibuprofène L'étiquette d'un médicament fournit l'information "Ibuprofène 400 mg ". On dissout un comprimé contenant l'ibuprofène selon un protocole bien défini afin d'obtenir une solution aqueuse (S) d'ibuprofène eontenn dans ce comprimé, on procède à un titrage acido-basique du volume V_S par une solution aqueuse d'hydroxyde de sodium $Na_{(aq)}^+ + HO_{(aq)}^-$ de concentration molaire $C_B = 1, 94. 10^{-1}$ mol. L^- , en utilisant le dispositif expérimental de la figure (1). La figure (2) donne les courbes $pH = f(V_B)$ et $\frac{dPH}{dV_B} = g(V_B)$ obtenues lors de ce dosage.	الصفحة	NICOZE	terall - 2018 to le	العمرة الكالمرات الحميدا	الاعقادات العادي	
Chimie (7 points): Transformations acido-basiques; Étude d'une pile Les deux parties sont indépendantes Partie 1: Etude de l'ibuprofène comme acide carboxylique L'ibuprofène est une molécule de formule brute $C_{13}H_{18}O_2$. Elle constitue le principe actif de divers médicaments de la classe des anti-inflammatoires. Cette partie vise: - l'étude d'une solution aqueuse d'ibuprofène; - le titrage d'une solution aqueuse d'ibuprofène. Donnée: $M(C_{13}H_{18}O_2) = 206 \ g.mol^{-1}$. 1. Etude d'une solution aqueuse d'ibuprofène Le pH d'une solution aqueuse d'ibuprofène Le pH d'une solution aqueuse d'ibuprofène de concentration molaire $C = 5, 0.10^{-2} \ mol.L^{-1}$ vaut $pH = 2,7$ à $25^{\circ}C$. L'équation de la réaction modélisant la transformation entre l'ibuprofène et l'eau est : $C_{13}H_{18}O_{2(ag)} + H_2O_{(f)} \rightleftharpoons C_{13}H_{17}O_{2(ag)} + H_3O_{(ag)}^{*}$ 1.1. Montrer que cette transformation est limitée. 1.2. Calculer la valeur du quotient de réaction $Q_{r,ig}$ du système chimique à l'équilibre. 1.3. En déduire la valeur du pK_A du couple $(C_{13}H_{18}O_{2(ag)}/C_{13}H_{17}O_{2(ag)})$. 2. Titrage d'une solution aqueuse d'ibuprofène L'étiquette d'un médicament fournit l'information "Ibuprofène 400 mg ". On dissout un comprimé contenant l'ibuprofène selon un protocole bien défini afin d'obtenir une solution aqueuse (S) d'ibuprofène de volume $V_S = 100 \ mL$. Pour vérifier, la masse d'ibuprofène contenu dans ce comprimé, on procède à un titrage acido-basique du volume V_S par une solution aqueuse d'hydroxyde de sodium $Na_{(m)}^{*} + HO_{(ag)}^{*}$ de concentration molaire $C_g = 1,94.10^{-1} \ mol.L^{-1}$, en utilisant le dispositif expérimental de la figure (1).	6	NS2/F				oc
Chimie (7 points): Transformations acido-basiques; Étude d'une pile Les deux parties sont indépendantes Partie 1: Etude de l'ibuprofène comme acide carboxylique L'ibuprofène est une molécule de formule brute $C_{13}H_{18}O_2$. Elle constitue le principe actif de divers médicaments de la classe des anti-inflammatoires. Cette partie vise: - l'étude d'une solution aqueuse d'ibuprofène; - le titrage d'une solution aqueuse d'ibuprofène. Bonnée: $M(C_{13}H_{18}O_2) = 206 \text{ g.mol}^{-1}$. L'étude d'une solution aqueuse d'ibuprofène Le pH d'une solution aqueuse d'ibuprofène Le pH d'une solution aqueuse d'ibuprofène Le pH d'une solution aqueuse d'ibuprofène de concentration molaire $C = 5, 0.10^{-2} \text{ mol.}L^{-1}$ vaut $pH = 2, 7 \text{ à } 25^{\circ}C$. L'équation de la réaction modélisant la transformation entre l'ibuprofène et l'eau est : $C_{13}H_{18}O_{2(ap)} + H_2O_{(t)} \rightleftharpoons C_{13}H_{17}O_{2(ap)} + H_3O_{(aq)}^{+}$ 1.1. Montrer que cette transformation est limitée. 1.2. Calculer la valeur du quotient de réaction $Q_{r,kq}$ du système chimique à l'équilibre. 1.3. En déduire la valeur du pK_A du couple $(C_{13}H_{18}O_{2(ap)} / C_{13}H_{17}O_{2(ap)})$. 2. Titrage d'une solution aqueuse d'ibuprofène L'étiquette d'un médicament fournit l'information "Ibuprofène 400 mg ". On dissout un comprimé contenant l'ibuprofène selon un protocole bien défini afin d'obtenir une solution aqueuse (S) d'ibuprofène de volume $V_S = 100 \text{ mL}$. Pour vérifier, la masse d'ibuprofène contenu dans ce comprimé, on procède à un titrage acido-basique du volume V_S par une solution aqueuse d'hydroxyde de sodium $Na_{(ap)}^* + HO_{(ap)}^*$ de concentration molaire $C_g = 1,94.10^{-1}$ $mol.L^{-1}$, en utilisant le dispositif expérimental de la figure (1).	Barème				***	
PH; dpH dV _R	0,5 0,75 0,25	Partie 1: L'ibuprof divers mé Cette partie 1: le tette partie 1: L'étue de Le pH d'epH = 2,7 L'équation 1.1. Montre 1.2. Calcul 1.3. En déd 2. Titrage L'étiquette On dissout solution aq Pour vérifie du volume molaire C_B	Chimie (7 points): Transfor Les deux particulate de l'ibuprofène comme accène est une molécule de formule dicaments de la classe des anti-ine vise: ude d'une solution aqueuse d'ibuprofène d'une solution aqueuse d'ibuprofène solution aqueuse d'ibuprofène à $25^{\circ}C$. de la réaction modélisant la transformation est limer la valeur du quotient de réaction duire la valeur du pK_A du couple d'une solution aqueuse d'ibuprofène d'une solution aqueuse d'ibuprofène d'une solution aqueuse d'ibuprofène la valeur du pK_A du couple d'une solution aqueuse d'ibuprofène de volume en la masse d'ibuprofène de volume en la masse d'ibuprofène de volume en la masse d'ibuprofène contenu V_S par une solution aqueuse d'hyer V_S par une solution aqueuse d'hye	Sujet mations acido-basique rties sont indépenda ide carboxylique brute $C_{13}H_{18}O_2$. Elle iflammatoires. ofène; profène. ene de concentration moi formation entre l'ibupr $I_2O_{(I)} \rightleftharpoons C_{13}H_{17}O_{2(aq)}$ itée. if $Q_{r,iq}$ du système chim $(C_{13}H_{18}O_{2(aq)}/C_{13}H_{17}O_{2(aq)})$ ofène ation "Ibuprofène ene selon un protocole $V_S = 100 \ mL$ dans ce comprimé, on hroxyde de sodium Nd et dispositif expériment et $\frac{dpH}{dV_B} = g(V_B)$ obter	les; Étude d'une pile ntes constitue le principe act KACHICHE laire $C = 5, 0.10^{-2} \ mol.L^{-1}$ ofène et l'eau est: $+ H_3 O^+_{(aq)}$ nique à l'équilibre. $O^{2(aq)}$). 400 mg ". bien défini afin d'obtenir procède à un titrage acide $a^+_{(aq)} + HO^{(aq)}$ de concentrate al de la figure (1). nues lors de ce dosage.	if de
			Figure (1)	0 2	Figures (2)	5
	į l	 -			Figure (2)	

الصفحة 3 NS27F	الاعتدان الوحائي الموجد الوثالوريا – الدورة العادية 2018 – الموجوع	
6	 عاحة، الغيرياء والكيمياء - حمية العلوم العبريبية عطات علوم المياة والأرض - خيار فرنسية 	oc

- 1 2.1. Nommer les éléments du dispositif expérimental numérotés 1,2,3 et 4 sur la figure (1).
 - 2.2. Parmi les courbes (1) et (2) de la figure (2), quelle est celle qui représente $pH = f(V_B)$?
- 0,5 2.3. Déterminer graphiquement la valeur du volume $V_{B,E}$ versé à l'équivalence.
- 0,5
 2.4. Écrire l'équation de la réaction qui a eu lieu lors du dosage sachant qu'elle est totale.
 2.5. Calculer la valeur de la quantité de mais de la grantité de mais de la grantité de
- 0,5 2.5. Calculer la valeur de la quantité de matière n_A d'ibuprofène dans la solution (S).
- 0,75

 2.6. Déduire la valeur de la masse m d'ibuprofène dans le comprimé et la comparer à celle indiquée sur l'étiquette du médicament.

<u>Partie 2</u> : Étude d'une pile

KACHICHE

Les piles constituent des systèmes chimiques dont le fonctionnement est basé sur des réactions d'oxydo-réductions. L'étude de ces systèmes permet de prévoir le sens de leur évolution et recounaitre le fonctionnement de ces piles.

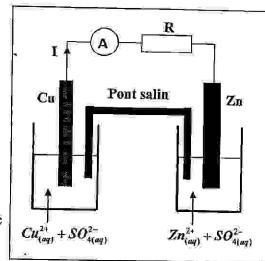
Cette partie vise la détermination de la durée de fonctionnement de la pile (Zinc/Cuívre) schématisée dans la figure ci-contre.

Données :

0,75

- Masse de la partie immergée de l'électrode de Zinc : m = 6,54 g ;
- Volume de chaque solution : $V = 50 \ mL$;
- Concentration de chaque solution : $C = 1,0 \text{ mol.} L^{-1}$;
- $-1\mathcal{F} = 9,65.10^4 C.mol^{-1}$
- $M(Zn) = 65,4 g.mol^{-1}.$

On laisse fonctionner la pile pendant une durée Δr suffisamment longue jusqu'à ce que la pile ne débite plus. L'équation bilan du fonctionnement de cette pile est :


$$Zn_{(s)} + Cu_{(aij)}^{2+} \to Zn_{(aij)}^{2+} + Cu_{(s)}$$

1. Recopier sur votre copie le numéro de la question et écrire la lettre correspondante à la proposition vraie.

Le schéma conventionnel de cette pile est :

A	$\Theta Cu_{(s)} \left Cu_{(aq)}^{2+} \right \left Zn_{(aq)}^{2+} \left Zn_{(s)} \right \oplus$	В	$\oplus Zn_{(s)} Zn_{(aq)}^{2+} Cu_{(aq)}^{2+} Cu_{(s)} \Theta$
С	$\Theta Zn_{(s)} Zn_{(aq)}^{2+} Cu_{(aq)}^{2+} Cu_{(s)} \oplus$	D	$\oplus Cu_{(aq)}^{2+} Cu_{(s)} Zn_{(s)} Zn_{(aq)}^{2+} \Theta$

- 0,75 2. Montrer que la quantité de matière du cuivre déposé est $n(Cu) = 5.10^{-2} mol$.
 - 3. Déterminer la valeur de la durée Δt du fonctionnement de la pile sachant qu'elle délivre un courant d'intensité constante I=100~mA.

4	الاعتمان الوطني المومد البكالوريا - الحورة العاحية 2018 - الموسوع	
6	 عادة: الفيزياء والشيمياء - حجرة العلوم التجريبية عملك علوم الحياة والأرض حيار فروسية 	oc
-		
	PHYSIQUE (13 points)	
	CONTROL WITHOUT AND THE CONTROL OF T	
	Exercice 1 (2,5 points): Ondes ultrasonores	
	Les ondes ultrasonores sont des ondes mécaniques qui peuvent se propager dans des mili- différents. Elles engendrent dans des conditions bien définies certains phénomènes physic	eux jues.
	Pour déterminer la célérité d'une onde ultrasonore de fréquence N dans deux milieux différen utilise un dispositif constitué d'un émetteur E et d'un récepteur R fixés aux extrémités d'un tu E et R sont reliés à un oscilloscope.	ts, on be.
	Données : * Distance émetteur - récepteur : $D = ER = 1 \text{ m}$; KACHICHE * $N = 40 \text{ kHz}$.	
0,5	1. L'onde ultrasonore est-elle une onde longitudinale ou transversale?	
,	2. On remplit le tube par de l'eau. L'oscillogramme ci-contre représente le signal émis par E et celui reçu par R.	
	Recopier sur votre copie le numéro de la	_
	question et écrire la lettre correspondante à la proposition vraie.	
0,75	2.1. La célérité des ultrasons dans l'eau vaut :	
3:4:	A $c = 1520 \text{ m.s}^{-1}$ B $c = 620 \text{ m.s}^{-1}$ C $c = 1667 \text{ m.s}^{-1}$ D $c = 330 \text{ m.s}^{-1}$	
0,5	2.2. La longueur d'onde de l'onde ultrasonore vaut :	
	A $\lambda = 25,2 \text{ mm}$ B $\lambda = 30,5 \text{ mm}$ C $\lambda = 37,2 \text{ mm}$ D $\lambda = 41,7 \text{ mm}$	
0,75	3. On remplace l'eau par un autre liquide, on constate que le décalage horaire entre le signal ém	is et le
	signal reçu est $\Delta t = 0.9 \text{ s}$. La célérité des ultrasons dans la liquide est alle avenues $t = 1.00$	10 1401
	La célérité des ultrasons dans le liquide, a-t-elle augmenté ou diminué par rapport à celle dans l Justifier.	eau?
Į	The state of the s	
ľ	Exercice 2 (5 points): Evolution d'un système électrique	
	Le comportement d'un système électrique dépend des éléments qui le constituent (Conden Bobine,). Selon les conditions initiales, l'évolution d'un tel système peut être décrite à l'a	sateur, ide de
	certains parametres et grandeurs électriques ou énergétiques.	
	Partie 1 : Détermination de la capacité d'un condensateur	
	On réalise la charge d'un condensateur de capacité C , à l'aide d'un générateur idéal de courant débite un courant d'intensité constante $I_0 = 0,5 \mu A$ (figure 1).	qui
	K ac(V)	7
	1 ₀	
	c (6)	
	Figure (1) 0 2 Figure (2)	
	* * * * * * * * * * * * * * * * * * * *	_ ₽

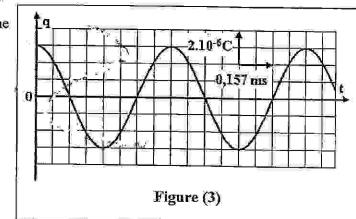
الصفحة	NS27F	الاعتمان الوطني المعجم البكالوريا - المورة العامية 2018 - الموسوع
6		 ماحة، الفيرياء والكيمياء - حعبة العلوم التجريبية عسالت علوم الدياة والأرض - حيار فرجعية
[2	1 l'instant t	= 0 on ferme l'interrupteur K La figure (2) de la page 4/6 représents l'éval

de la page 4/6 représente l'évolution de la tension $u_{C}(t)$ aux bornes du condensateur.

1. Recopier sur votre copie le numéro de la question et écrire la lettre correspondante à la proposition 0,5 vraie.

L'expression de u_c est :

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$u_C = \frac{z_\theta}{C} \cdot I$	$C \qquad u_C = I_0$	C.t D	$u_C = Ct$
--	------------------------------------	----------------------	-------	------------


0,5 2. Vérifier que $C = 0.5 \mu F$.

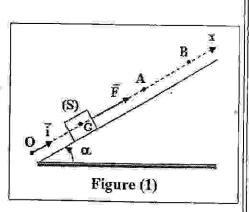
Partie 2 : Étude de la décharge d'un condensateur à travers une bobine

À l'instant $t_0 = 0$, on branche le condensateur précédemment chargé aux hornes d'une bobine

d'inductance L et de résistance négligrable.

- 0,75 1. Établir l'équation différentielle vériffée par la charge q(t) du condensateur. 2. La courbe de la figure (3), représente l'évolution de a(t).
- 0,5 2.1. Nommer le régime d'oscillations que montre le graphe de la figure (3). 2.2. La solution de l'équation différentielle

s'écrit: $q(t) = Q_m \cdot \cos\left(\frac{2\pi}{T_c}t + \varphi\right)$.

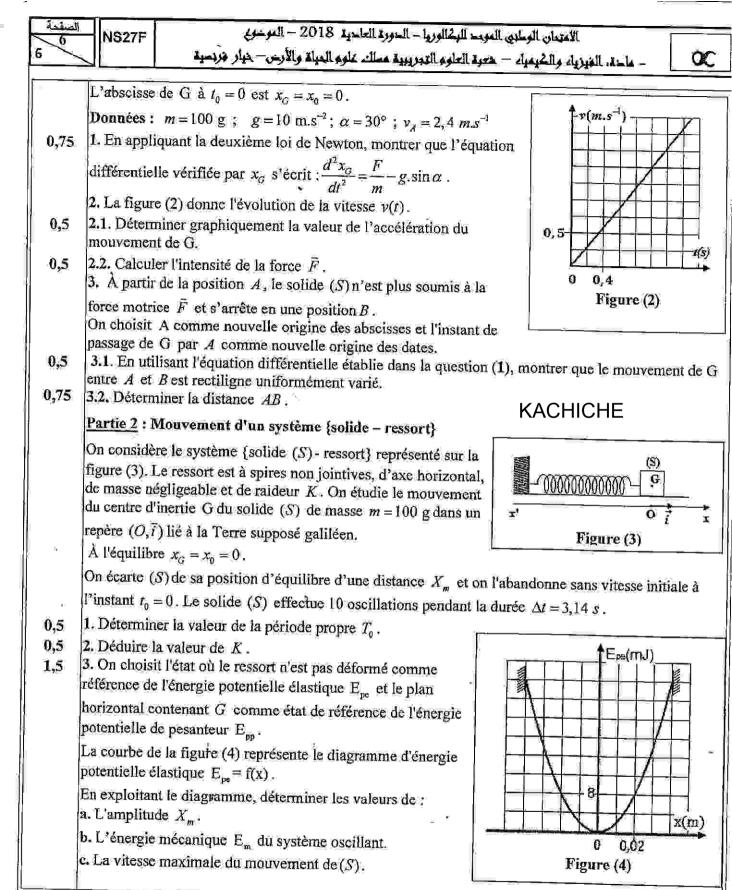

négligeables.

- 2.2.1. En exploitant le graphe de la figure (3), déterminer les valeurs de Q_m , T_0 et φ . 0.75
- **2.2.2.** Calculer la valeur de L. 0,5
- 2.3. Expliquer qualitativement la conservation de l'énergie totale du circuit (LC) et calculer sa valeur. 1 2.4. Déterminer la valeur maximale de l'intensité du courant dans le circuit. 0,5
 - Exercice 3 (5,5 points): Evolution d'un système mécanique

Les mouvements des systèmes mécaniques dépendent de la nature des actions mécaniques qui leurs sont appliquées.

L'étude de l'évolution temporelle de ces systèmes permet de déterminer certaines grandeurs dynamiques et cinématiques et d'expliquer certains aspects énergétiques.

Cet exercice vise l'étude du mouvement de translation rectiligne d'un solide sur un plan incliné et l'étude du mouvement du système oscillant {solide - ressort}. Dans cet exercice tous les frottements sont supposés



Partie 1 : Mouvement d'un solide sur un plan incliné

On considère un solide (S) de masse m susceptible de glisser selon la ligne de plus grande pente d'un plan incliné faisant un angle α avec l'horizontal.

Le solide (S) démarre sans vitesse initiale, à l'instant $t_0 = 0$ à partir de la position O sous l'action d'une force motrice \vec{F} constante.

Le solide (S) passe par la position A avec la vitesse v_A . On étudie le mouvement du centre d'inertie G du solide (S) dans un repère (O, \bar{i}) lié à la Terre supposé galiléen (figure 1).

