

CONTROLE N°2

Année Scolaire: 2018-2019

Avril 2019

Niveau: T. C

Physique - Chimie

Durée: 2H

Page : 1/3

Chimie: (7 points)

Données : * Les masses molaires atomiques :

 $M(H)= 1 g.mol^{-1}$; $M(C)= 12 g.mol^{-1}$ et $M(O)= 16 q.mol^{-1}$

* La masse volumique de l'acide éthanoïque : $\rho = 1.05 \text{ g.mL}^{-1}$

Le vinaigre à 8° est une solution aqueuse contenant essentiellement de l'acide éthanoïque de formule chimique $C_2H_4O_2$.

L'appellation vinaigre à 8° signifie que dans 100mL de solution, il y a 8mL d'acide éthanoïque pur.

- 1,00 1) Calculer la masse molaire moléculaire M de l'acide éthanoïque.
- 0,50 2) Chercher la masse m de l'acide éthanoïque dans le volume V= 1L de vinaigre.
- 1,00 3) Déduire que la concentration molaire en acide éthanoïque de la solution S_0 du vinaigre a pour valeur $C_0 = 1$, $4mol.L^{-1}$.
 - 4) On souhaite préparer, à partir de la solution précédente S_0 , une solution aqueuse S_1 de volume $V_1 = 500mL$ et 100 fois moins concentrée.
- 1,00 4-1) Donner la définition de la dilution d'une solution aqueuse.
- 1,00 $\|4-2\|$ Calculer le volume V_0 à prélever de la solution S_0 pour la préparation de S_1 .
- 1,00 ||4-3| Faire la liste du matériel à utiliser pour préparer la solution S_1 .
- 1,50 $| 4-4 \rangle$ Décrire le mode opératoire permettant la préparation de S_1 .

Physique1: (7 points)

On néglige les frottements et la masse de la corde (C).

Un treuil (T) est un dispositif mécanique composé :

- * D'un tambour cylindrique de rayon R=20cm et de poids d'intensité $P_1=925N$, qui peut tourner autour d'un axe (Δ) fixe et horizontal confondu avec son axe de symétrie passant par le point O.
- * D'une manivelle OA solidaire au tambour, de masse négligeable et de longueur L= 60cm.

On veut monter un tonneau (S) de poids d'intensité P_2 = 3000N à l'aide d'un plan incliné d'un angle θ = 30° avec l'horizontale et du treuil (T) précédent.

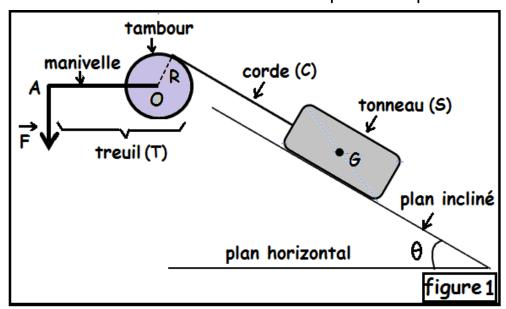
La corde (C) enroulée sur le tambour et attachée au tonneau (S), est tendue parallèlement au plan incliné. A l'extrémité A de la manivelle OA, on exerce une force \vec{F} perpendiculairement à cette manivelle pour réaliser l'équilibre du système considéré. (Voir la figure 1 à la page 3)

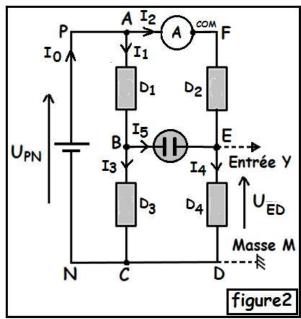
- 1) Etude de l'équilibre du système $S_1 = \{treuil\ (T)\}$
- 1,00 $\|$ 1-1) Faire le bilan des forces qui agissent sur le système S_1 , et les représenter sur la figure 1.
- 1,50 | 1-2) En Appliquant le théorème des moments sur S_1 , Trouver l'expression de l'intensité T_1 de la force \vec{T}_1 appliquée par la corde en fonction, de l'intensité F de la force \vec{F} , de R et L.

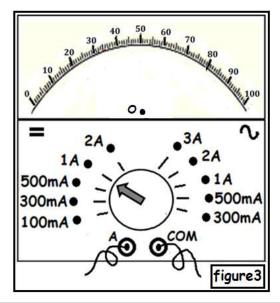
Tourner la page ...

Suite de physique1 :

- 2) Etude de l'équilibre du système S2 = {tonneau}
- 1,00 $\|2-1$) Faire l'inventaire des forces agissant sur le système S_2 , et les représenter sur la figure 1.
- 1,50 | 2-2) Par la méthode analytique, montrer que l'intensité T_2 de la force \vec{T}_2 appliquée par la corde sur S_2 , a pour expression : $T_2 = P_2 \cdot \sin(\theta)$
- 0,50 | 2-3) En écrivant $T_1 = T_2$, déduire la valeur de l'intensité F de la force \vec{F} due à l'opérateur.
- 1,50 **3)** Construire le polygone des forces appliquées sur S_1 , et déduire toutes les caractéristiques de la force $\overrightarrow{R}_{\Delta}$ exercée par l'axe (Δ) sur S_1 . Prendre l'échelle : $1cm \rightarrow 250N$


Physique2: (6 points)


On considère le circuit électrique de la figure2 (à la page3), comprenant :


- * Un générateur (G) aux bornes duquel se trouve une tension électrique continue U_{PN} ;
- * Quatre dipôles récepteurs D_1 , D_2 , D_3 et D_4 parcourus respectivement par des courants électriques d'intensités I_1 , I_2 , I_3 et I_4 , avec I_2 = 750mA, I_3 = 1,25A et I_4 = 1,75A;
- * Un électrolyseur contenant une solution aqueuse de chlorure de cuivre II de formule chimique $(Cu^{2+} + Cl^{-})$, et parcouru par un courant d'intensité l_5 ;
- * Un ampèremètre à aiguille traversé par le courant d'intensité I_2 représenté à la figure3 (page3) et un voltmètre numérique, qui placé aux bornes de D_1 , donne la tension U_{AB} = 4,21V.
- * Un oscilloscope qui permet de visualiser la tension U_{ED} aux bornes de D_4 :
- 1,00 | 1) Calculer les intensités : I_0 passant par (G), I_1 et I_5 .
- 1,00 **2)** Sur la figure2, préciser l'anode et la cathode de l'électrolyseur, et trouver le nombre N de cations qui se sont dirigés vers la cathode pendant la durée $\Delta t = 16min$.
- 1,50 3) Sur la figure 3 dessiner (en justifiant) la position de l'aiguille d'origine O, et déterminer l'incertitude relative sur la mesure de I_2 , sachant que l'ampèremètre et de classe X=1,5.
- 0,50 **4)** Placer le voltmètre sur le circuit de la figure**2** en indiquant sa borne COM, et en représentant la tension électrique **U**_{AB} mesurée par ce voltmètre.
- 1,00 || 5) Donner l'encadrement de la tension U_{AB} . (On exprime le résultat par 3 chiffres significatifs)
- 1,00 **6)** Sachant que la sensibilité verticale de l'oscilloscope est réglée sur $S_V = 2V.cm^{-1}$, et que la tension mesurée vaut $U_{ED} = 4,80V$. Tracer sur la figure 4 (à la page 3); la position du trait lumineux observé sur l'écran de l'oscilloscope. Justifier la réponse.

Nom et prénom : Classe :

Rendre cette feuille avec la copie des réponses.

