Correction du CONTROLE N°3 Année Scolaire: 2018-2019

Juin 2019 Nive

Niveau : T. C

Physique - Chimie

Durée: 2H

Page : 1/6

Chimie: (7 points)

1,00 1) Calcul en mol, des quantités de matière initiales no(Na) et no(H2O) des deux réactifs :

*
$$n_0(Na) = \frac{m_0}{M(Na)} = \frac{23.10^{-3}}{23} = \underline{10^{-3} mo\ell}$$

*
$$n_0(H_2O) = \frac{m}{M(H_2O)} = \frac{\rho \cdot V_0}{M(H_2O)} = \frac{1 \times 180}{2 \times 1 + 1 \times 16} = \underline{10mo\ell}$$

1,50 2) Remplissage du tableau d'avancement de cette réaction :

Equation de la réaction		$2.Na_{(s)} + 2.H_2O_{(\ell)} \rightarrow 2.Na^+_{(aq)} + 2.HO^{(aq)} + H_2(g)$				
Etat du système	Avancement $x en (mo\ell)$	Quantités de matière en $(mo\ell)$				
Etat Initial	x=0	10 ⁻³	10	0	0	0
Etat Intermédiaire	X	10 ⁻³ – 2.x	10 – 2.x	2.x	2.x	х
Etat Final	\mathcal{X}_m	10 ⁻³ - 2.x _m	10 - 2.x _m	2. x _m	2. x _m	Xm

3) * Détermination de l'avancement maximal x_m de cette réaction :

– Si le sodium ${\bf Na}$ est le réactif limitant : $n_f({\it Na}) = 0$

alors:
$$10^{-3} - 2.x_m = 0 \Rightarrow x_m = \frac{10^{-3}}{2} = 5.10^{-4} \text{mol}$$

– Si l'eau ${
m H_2O}$ est le réactif limitant : $n_f(H_2O)$ = 0

alors:
$$10-2.x_m=0 \Rightarrow x_m=\frac{10}{2}=5mo\ell$$

Or $5.10^{-3}mo\ell < 5mo\ell$, donc l'avancement maximal sera : $\underline{x_m} = 5.10^{-4}mo\ell$

* Déduction du réactif limitant :

Le réactif limitant est le sodium Na.

1,00 4) Montrons par le calcul que V ≈ 180mL :

* La quantité d'eau restante à la fin de la réaction est : $n_f(H_2O) = 10 - 2.x_m$

* La masse d'eau correspondante est : $m_{eau} = n_f(H_2O) \times M(H_2O) = (10 - 2.x_m) \times M(H_2O)$

* La masse et le volume sont liés par : $\rho = \frac{m_{eau}}{V} \ alors \ V = \frac{m_{eau}}{\rho}$

* Finalement on trouve : $V = \frac{(10-2.x_m) \cdot M(H_2O)}{\rho}$

A.N:
$$V = \frac{(10 - 2 \times 5.10^{-4}) \times 18}{1} = \underline{179,98mL} \approx 180mL$$

1,00 **5) <u>* Détermination de [Na⁺]</u>f à l'état final :**

On sait que : $\left[Na^+\right]_f = \frac{n_f(Na^+)}{V}$; Or le tableau nous donne : $n_f(Na^+) = 2.x_m$

Finalement: $[Na^+]_f = \frac{2.x_m}{V}$

A.N: $[Na^+]_f = \frac{2 \times 5.10^{-4}}{180.10^{-3}} = 5.56.10^{-3} mo\ell.L^{-1}$

* Détermination du volume V_g du gaz H₂ dégagé à l'état final :

On sait que : $n_f(H_2) = \frac{V_g}{V_m}$ $alors \ V_g = n_f(H_2).V_m$; Or le tableau nous donne : $n_f(H_2) = x_m$

 ${\rm Finalement:} \ \ V_g = x_m.V_m \\$

A.N: $V_g = 5.10^{-4} \times 24 = 0.012 L = 12 mL$

1,50 6) Cherchons la masse m du sodium restante pour laquelle [Na⁺] = 2.10⁻³mol.L⁻¹:

* La masse du sodium restante est : $m = n(Na) \times M(Na)$

* La quantité de sodium restante est : $n(Na) = 10^{-3} - 2.x$

Donc: $m = (10^{-3} - 2.x) \times M(Na)$ (*)

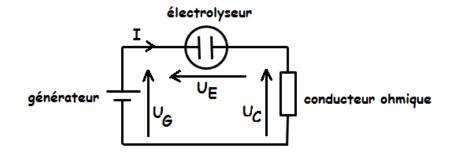
* La concentration en ion Na^+ : $[Na^+] = \frac{2.x}{V}$ alors $x = \frac{[Na^+]V}{2}$

* La relation (*) s'écrira alors : $\underline{m} = (10^{-3} - [Na^+].V).M(Na)$

A.N: $m = (10^{-3} - 2.10^{-3} \times 0.18) \times 23 = 1.47.10^{-2} g = 14.7 mg$

Physique1: (6 points)

1,00 1) Schéma du circuit électrique, avec représentation du sens du courant électrique et de la tension électrique aux bornes de chaque dipôle électrique de ce circuit :

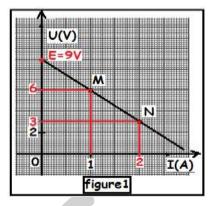


2) Détermination graphique de la valeur de E et celle de r du générateur (G) : 1,00

- * La f.e.m est l'ordonnée à l'origine : E = 9V
- * La résistance interne a pour valeur la valeur absolue Du coefficient directeur de la droite :

$$r = \left| \frac{U_M - U_N}{I_M - I_N} \right| = \left| \frac{6 - 3}{1 - 2} \right|$$

$$r = 3\Omega$$



1,00 3) Montrons que I=0,25A, par application de la loi d'Ohm et celle de l'addition des tensions :

- * D'après la loi d'additivité des tensions électriques : $U_G = U_E + U_C$ (*)
- $U_G = E r I$ * D'après la loi d'Ohm appliquée au dipôle (G) :
- * D'après la loi d'Ohm appliquée à l'électrolyseur : $U_F = E' + r'.I$
- $_{\star}$ D'après la loi d'Ohm appliquée au conducteur ohmique : U_{C} = R.I
- E r.I = E' + r'.I + R.I* La relation (*) s'écrira alors :

ou bien
$$E-E'=(r+r'+R).I \Rightarrow I=\frac{E-E'}{r+r'+R}$$

A.N:
$$I = \frac{9-4}{3+2+15} = 0.25A$$

1,00 4) Par application de la loi de Pouillet, retrouvons la valeur précédente de l'intensité I :

La loi de Pouillet permet d'écrire l'expression de l'intensité du courant sous la forme :

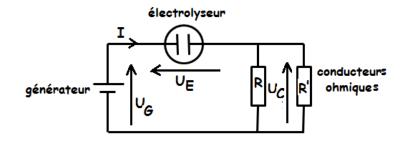
$$I = \frac{\sum E - \sum E'}{\sum r + \sum r' + \sum R}$$

Dans notre cas : $I = \frac{E - E'}{r + r' + R}$ A.N : $I = \frac{9 - 4}{3 + 2 + 15} = \underbrace{0.25A}$

A.N:
$$I = \frac{9-4}{3+2+15} = 0.25A$$

5) Dans le circuit précédent, on place un conducteur ohmique (D') de résistance R', en dérivation avec le dipôle(D).

0.50 5-1) Construction du schéma du nouveau circuit électrique :



1,50 5-2) Calcul de la valeur de la résistance R', pour laquelle I '= 2.I :

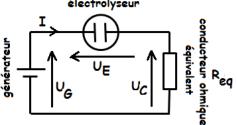
Soit R_{eq} la résistance du dipôle équivalent à l'association en dérivation des deux conducteurs

$$\text{Ohmiques}: \ R_{eq} = \frac{R.R'}{R+R'} \\ \Leftrightarrow (R+R').R_{eq} = R.R' \\ \Leftrightarrow R.R_{eq} = (R-R_{eq}).R' \\ \Leftrightarrow R' = \frac{R.R_{eq}}{R-R_{eq}} \ (*)$$

D'après la loi de Pouillet : $I' = \frac{E - E'}{r + r' + R_{eq}}$

Alors: $I'.(r+r'+R_{eq}) = E-E'$

Ou bien : $r + r' + R_{eq} = \frac{E - E'}{I'}$



Donc $R_{eq} = \frac{E - E'}{I'} - (r + r')$; on emporte cette expression dans la relation (*):

Finalement:
$$R' = \frac{R \cdot \left[\frac{E - E'}{I'} - (r + r') \right]}{R - \left[\frac{E - E'}{I'} - (r + r') \right]}$$

A.N:
$$R' = \frac{15 \times \left[\frac{9-4}{2 \times 0.25} - (3+2) \right]}{15 - \left[\frac{9-4}{2 \times 0.25} - (3+2) \right]} = 7.5\Omega$$

Physique2: (7 points)

0,75 1-1) Signification de Us et de Uz :

- * La tension de seuil est la tension au-delà de laquelle la diode Zener commence à conduire le courant électrique, lorsqu'elle est polarisée dans le sen direct.
- * La tension Zener est la tension minimale à appliquer aux bornes de la diode Zener pour qu'elle devienne conductrice quand elle polarisée dans le sens inverse.

0,50 1-2) <u>Détermination graphique de la tension U_S et de la tension U_Z :</u>

D'après la figure2; on trouve: Us = OV et Uz = 4V.

1,00 2-1) Calcul de la tension électrique U_{CF}:

- * D'après la loi d'unicité de la tension : $U_{\mathit{CF}} = U_{\mathit{BK}}$
- * D'après la loi d'additivité des tensions électriques : $U_{\mathit{BK}} = U_{\mathit{BA}} + U_{\mathit{AK}}$
- * D'après la loi d'Ohm appliquée au dipôle (D₁) : $U_{BA} = R_1.I_1$ et que : $U_{AK} = Us$
- * Finalement $U_{\mathit{CF}} = R_1.I_1 + Us$ or Us = 0 donc $U_{\mathit{CF}} = R_1.I_1$

A.N:
$$U_{CF} = 50 \times 100.10^{-3} = \underline{5V}$$

1,00 2-2) <u>Déduction de I₀=350mA</u>:

* Dans la maille (PBAKNP) : on applique la loi d'addition des tensions :

$$U_{PN}=U_{PB}+U_{BK}$$
 ou bien $U_{PN}=U_{PB}+U_{CF}$ (*)

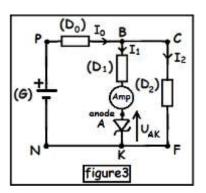
* D'après la loi d'Ohm appliquée au dipôle (G) :

$$U_{PN} = E - r \cdot I_0 = E (car \ r = 0)$$

- * D'après la loi d'Ohm appliquée au dipôle (D0) : $U_{PB} {=} R_0 I_0$
- * La relation (*) s'écrira : $E\!=\!R_0.I_0\!+\!U_{C\!F}$

Alors:
$$I_0 = \frac{E - U_{CF}}{R_0}$$

A.N:
$$I_0 = \frac{12-5}{20} = 0.35A = 350 \text{ mA}$$

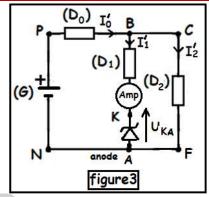


- 1,50 2-3) Calcul de la valeur de la résistance R₂:
 - * D'après la loi d'Ohm appliquée au dipôle (D2) : $U_{CF} = R_2 I_2$
 - * Au nœud B : $I_0 = I_1 + I_2 \ alors \ I_2 = I_0 I_1$ Donc $U_{CF} = R_2 . (I_0 I_1)$

Finalement
$$R_2 = \frac{U_{CF}}{I_0 - I_1}$$

A.N:
$$R_2 = \frac{5}{0.35 - 0.1} = \underline{20\Omega}$$

0,75 3-1) Construction du schéma du nouveau circuit électrique :



- 1,50 3-2) Recherche de la nouvelle intensité I'₁ du courant qui va traverser la diode (D_Z):
 - $m{*}$ Dans la maille (PBKANP), on applique la loi d'addition des tensions : U_{PN} = U_{PB} + U_{BK} + U_{KA} (*)
 - * D'après la loi d'Ohm appliquée aux dipôles (D₀) et (D₁): $U_{PB} = R_0.I'_0$ et $U_{BK} = R_1.I'_1$
 - * D'après la loi d'Ohm appliquée au dipôle (G) : U_{PN} = $E-r.I_0$ = E $(car \ r=0)$
 - * La tension aux bornes de la diode polarisée en inverse : $U_{\mathit{KA}} = U_{z}$
 - * La relation (*) s'écrira : $E = R_0 I'_0 + R_1 I'_1 + U_z$ avec $I'_0 = I'_1 + I'_2$

Ou bien: $E-U_z = R_0.(I_1'+I_2') + R_1.I_1'$ équivalent à: $(R_0 + R_1).I_1' + R_0.I_2' = E-U_z$ (1)

- * Dans la maille (BCFAKB), on applique la loi d'addition des tensions : U_{CF} = U_{BK} + U_{KA} (**)
- * D'après la loi d'Ohm appliquée aux dipôles (D₁) et (D₂): $U_{CF} = R_2 I'_2$ et $U_{BK} = R_1 I'_1$
- * La relation (**) s'écrira : $R_2.I'_2=R_1.I'_1+U_z$ équivalent à : $R_2.I'_2-R_1.I'_1=U_z$ (2)
- * Les deux équations (1) et (2) forment le système suivant :

$$\begin{cases} (R_0 + R_1). \ I'_1 + R_0. \ I'_2 = E - U_z \\ -R_1. \ I'_1 + R_2. \ I'_2 = U_z \end{cases}$$

Par la méthode des déterminent alors :

$$I'_{1} = \frac{\begin{vmatrix} E - U_{z} & R_{0} \\ U_{z} & R_{2} \end{vmatrix}}{\begin{vmatrix} R_{0} + R_{1} & R_{0} \\ -R_{1} & R_{2} \end{vmatrix}} = \frac{R_{2}.(E - U_{z}) - R_{0}.U_{z}}{(R_{0} + R_{1}).R_{2} + R_{0}.R_{1}}$$

